
J. Fluid Mech. (1986), vol. 171, p p .  51g.545 

Printed in Great Britain 

519 

Numerical shock propagation using geometrical 
shock dynamics 
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(Received 2 August 1985 and in revised form 21 January 1986) 

A simple numerical scheme for the calculation of the motion of shock waves in gases 
based on Whitham’s theory of geometrical shock dynamics is developed. This scheme 
is used to study the propagation of shock waves along walls and in channels and the 
self-focusing of initially curved shockfronts. The numerical results are compared with 
exact and numerical solutions of the geometrical-shock-dynamics equations and with 
recent experimental investigations. 

1. Introduction 
The numerical solution of hyperbolic differential equations and the associated 

problem of numerical shock fitting has received much attention in the recent 
literature. The main numerical difficulty in their solution lies in the method of fitting 
the shock. The determination of the motion of the shock requires the calculation of 
the flow field in some region around the shock. In many problems, one is interested 
in the motion of the shock alone and not the details of the flow field. Also, most of 
the numerical work has dealt with smooth shocks, leaving open the more difficult 
problem of situations in which the shock becomes non-smooth, as in Mach reflection. 

In the present work, we shall be interested in the numerical propagation of shock 
waves in gases. Rather than solve the gasdynamic equations directly, the motion of 
the shock will be determined using geometrical shock dynamics, as developed by 
Whitham (1957,1959). By using this approximate theory, the motion of the shock can 
be determined without explicitly calculating the flow field behind. Furthermore, the 
equations of geometrical shock dynamics are nonlinear and hyberbolic ; thus, 
discontinuities in the shockfront appear naturally as shock-shocks. We briefly discuss 
the main elements of the theory of geometrical shock dynamics in $2. 

Geometrical shock dynamics propagates a shock along rays normal to the 
shockfront with the local speed of propagation depending on the local Mach number. 
Numerically, this procedure is performed by representing the shockfront by a 
discrete set of points and propagating each point along approximate normals with 
a speed determined by the discrete Mach number-area relation. In expansive 
regions of the shockfront, points are automatically inserted to maintain a good 
shockfront resolution. Shock-shocks are fitted in compressive regions of the shock- 
front by deleting points. A smoothing scheme is added to dampen high-frequency 
numerical fluctuations in the shockfront. The overall procedure is performed rapidly 
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with good accuracy for a wide variety of problems. The details of this numerical 
scheme are presented in $3. 

The method of geometrical shock dynamics is not limited to shock waves and can 
be used for the propagation of any wavefront for which there is a known relation 
between the local speed of propagation and the local amplitude. For example, Miles 
(1977) applied geometrical shock dynamics to the propagation of a soliton around 
corners. The numerical method presented here can also be used for these problems. 

In $4, we compare results obtained using our numerical scheme with exact and 
numerical solutions and experimental data. We consider the cases of shock-wave 
diffraction, shock waves in channels and focusing shock waves. 

Exact solutions using geometrical shock dynamics were found by Whitham for some 
shock-wave diffraction problems. Results calculated numerically are compared with 
these exact solutions. Bryson & Gross (1961) obtained numerical and experimental 
results for shock-wave diffraction by cones, cylinders and spheres. Their numerical 
results used the method of characteristics, in contrast to the scheme we present in 
$3. Shockfronts calculated using our numerical scheme are compared with these 
results as well. 

Edwards, Fearnley & Nettleton (1983) experimentally studied the propagation of 
initially plane shock waves in channels with a 90” circular bend. Results were 
obtained for the Mach number on the convex and concave walls and a description 
of the shock geometry was discussed. We compare our numerical calculations with 
their results. 

Sturtevant & Kulkarny (1976) experimentally determined the behaviour of 
focusing weak shock waves by reflecting plane shock waves from a concave wall. 
Depending on the initial Mach number and curvature of the wall, the shock either 
focused to form a crossed and folded front similar to that yhich occurs for 
geometrical acoustics or the shock remained uncrossed. We find that the approximate 
theory of geometrical shock dynamics is able to predict this observation with 
reasonable accuracy. 

2. Geometrical shock dynamics 
Whitham (1957, 1959) developed an approximate theory for shock propagation 

analagous to geometrical acoustics. In this theory, called geometrical shock dynamics, 
the shock propagates on rays normal to the shockfront, with the speed of propagation 
depending on the local amplitude of the shock. This theory is summarized in 
Whitham (1974, chapter 8). 

Whitham shows that the local Mach number and ray-tube area are related by 

where M, and A, are the initial Mach number and ray-tube area respectively. The 
function f ( M )  is given by 

f ( M )  = exp( -s- M2-1 dM), 

where 
h(M)  = (l+--) 2 1-p2 (1+2p+*), 1 

Y+l  P 

(y-l)M2+2 
P2 = 2yLlP-((y-l)’ 
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’\ 
FIGURE 1 .  Coordinate system (a, B). Shock positions given by a = const (solid lines) and rays 

given by B = const (dashed lines). 

y being the ratio of specific heats (= 1.4 for air). For clarity, we shall refer to (2.1) 
as the A-M relation. The integral in expression (2.2) may be evaluated explicitly. 
However, a numerical evaluation is more convenient. Approximations to (2.2) may 
also be obtained in the limits of weak and strong shocks. For weak shocks 

f ( M )  = ( M -  1)-2 as M +  1, (2.3) 

and for strong shocks f ( M )  = M-n as M + m ,  (2-4) 

where n = 1 + (2 /y )+  (2y/y- 1): = 5.0743 for y = 1.4. 
In the present work, we shall deal primarily with two-dimensional motion, even 

though the theory of shock dynamics applies in three dimensions as well. The 
two-dimensional formulation may be extended to axisymmetric motion without 
much change and we treat some of these cases also. 

In two dimensions, it is convenient to introduce an orthogonal curvilinear 
coordinate system (a, p) where successive shock positions are described by curves 
a = constant and rays by = constant (figure 1). The shockfront is described by its 
local Mach number M ( a ,  p) and its ray inclination angle @(a, p) referenced to a fixed 
direction, the x-axis say. It follows from a geometrical argument that the system of 
equations describing the propagation of the shockfront is 

a0 1 aM -+-- 
aa A ( M )  Clp 

where A = A ( M )  is the A-M relation. The characteristic form of (2.5) is 

(2.5) 

(2.6) (:kc$) ( O + o ( M ) )  = 0, 

M 
AA’ M‘-  1 

where 
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M 
FIGURE 2. (a) Mach reflection: incident shock I ,  Mach stem M ,  reflected shock R and vortex sheet 
V .  (a) Shock-shock geometry. Constant Mach number and ray inclination angle at state 1 separated 
from state 2 by shock-shock line inclined with angle x. 

Therefore, 

B f w ( M )  = constant on characteristics C ,  : - dp= + c .  (2.7) 
- d a  

The system (2.5) is hyperbolic and represents a wave motion for disturbances 
propagating on the shock. Since this system of equations is hyperbolic and nonlinear, 
the shockfronts can develop discontinuities in slope and Mach number, these being 
called shock-shocks. Shock-shocks correspond physically to the formation of Mach 
stems, the shock-shock discontinuity being the position of the triple-point. I n  Mach 
reflection there is also a reflected shock R and a vortex sheet V, as shown in figure 
2(a), but they do not appear explicitly in geometrical shock dynamics. Only the 
leading fronts appear, as in figure 2 ( b ) .  The change in direction and Mach number 
at the shock-shock imply their existence. 

Where a shock-shock develops, i t  is possible to treat it as a discontinuity in M and 
8. Whitham derives the appropriate jump conditions relating M, and 8, ahead of the 
shock-shock with M, and 8, behind it in terms of x, the angle of the shock-shock 
line with the x-axis (figure 2 b ) .  These jump relations are 

A(Mi) ( M i - M ;  ): 
tan (x -0 , )  = - i = l o r 2 .  Mi A2(M1)- -A2(M2)  ’ (2.9) 

Assuming M, and 8, are known, two of the three remaining variables are given by 
(2.8) and (2.9) if one of the remaining is known. In  the diffraction problems 
considered later, O2 is known from the geometry and this then gives M, and x. 

The characteristic solution (2.7) along with jump conditions (2.8) and (2.9) may 
be used to construct solutions in some simple cases. Solutions found in this manncr 
are completely analogous to  solutions found in one-dimensional gasdynamics or 
shallow-water waves for example. Later, the accuracy of the approximatc solution 
obtained numerically will be checked with some of the* exact solutions. 
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FIGURE 3. Time-marching scheme. Shockfront positions at t and t+At  (solid lines) and 
approximate rays (dashed lines). 

3. Numerical scheme 
I n  this section, we present the numerical scheme developed to calculate successive 

shockfronts using the theory of geometrical shock dynamics. The scheme is advan- 
tageous in its simplicity, which will become clear shortly, and its application to a 
wide variety of problems. Later, we shall apply the numerical procedure to calculate 
shocks for many cases. 

The numerical procedure is basically a leap-frog time-marching scheme. A sketch 
of the time-marching scheme is provided in figure 3. The shockfront is given by a 
discrete set of points. Each point is advanced along its normal with a speed specified 
by the discrete version of the A-M relation. I n  expansive regions of the shockfront, 
we insert points in order to maintain an approximately uniform point distribution. 
I n  compressive regions, we fit shock-shocks into the front by deleting points. A 
smoothing procedure is employed to  dampen high-frequency numerical errors in the 
shockfront position. 

The numerical scheme is based on an approximate integration along rays. On a 

ax 
- = M COse, - = M sine. 
aa aa 

We write (3.1) in vector form and eliminate a in favour of time t using a = a, t where 
a, is some undisturbed sound speed. Equations (3.1) become 

where x = (5, y) is the shockfront position and n = (cos 8, sin 8) is the normal to the 
shockfront. 

We approximate the shockfront position by a discrete set of points x j ( t ) ,  j = 1, 
. . . , N .  Let dl,(t) and ni(t) approximate the Mach number and shockfront normal a t  
x&t) respectively. Then, (3.2) becomes 

(3.3) 
d 
- -x t ( t )  = Mi(t)n,( t ) ,  dt 

i = 1 , .  . . , N ,  
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where we set a,, = 1 in all our calculations. System (3.3) is a nonlinear system of ODES 
and may be numerically integrated in a number of ways. We choose to  use a two-step 
leap-frog scheme 

xi(t+At) = x,(t-At)+2AtM,(t)ni(t), i = 1 , .  . . , N ,  (3.4) 

where t = ndt, n = 0, .  . . , T/At. Scheme (3.4) is explicit and second-order accurate in 
time. Furthermore, leap-frog adds no numerical dissipation which is a desirable 
property since system (3.2) is hyperbolic. 

The Mach number Mi(t )  in (3.4) is found by solving the approximate A-M relation 

Inverting the function f ( M )  gives 

The inverse functionf’ may be found explicitly in the limit of weak shocks (2.3) or 
strong shocks (2.4) ; however, we solve (3.6) numerically in general. The approximate 
area A,(t) in (3.6) is given by a centred scheme about the point x i ( t )  in the interior 
and a one-sided scheme a t  the endpoints 

~ ~ + ~ ( t ) - s $ ( t ) ,  if i = 1 ;  i si(t)-s,- . l( t) ,  if i = N ;  

A,(t) = 4 st+l( t ) -s , - l ( t ) ,  if i = 2, .  . . , N -  1 ; (3.7) 

where si( t )  is the discrete arclength given by 

i f i =  1; 
if i = 2, .  . . , N  s i - l ( t )+Ix,( t ) -xx,_,( t ) ) ,  

S i ( t )  = 

For the case of axisymmetric flow, we need only change the definition of A,(t) in the 
numerical scheme. The approximate area in this case is 

(yi+1+Yi) (s ,+l-s i ) ,  i f i  = 1 ;  

A&) = in 2Y&i+l-si-I), if i = 2, .  . . , N -  1 ; (3.9) 

( yi + yiP1) (si - s ~ - ~ ) ,  if i = N .  [ 
The normal to the shockfront n( t ) ,  which is required in (3.4), is determined by 

differentiating two cubic splines fitted to the data ( s j ( t ) ,  x j ( t ) )  and (s j ( t ) ,  y,( t ) ) ,  
j = 1 , .  . . , N .  Let Z(s) and g(s) denote these two cubic spline interpolants respectively. 
The smooth curve (Z(s),g(s)) is an approximation to  the shockfront at time t .  
Therefore, ni(t) is given by 

(3.10) 

where the primes denote differentiation with respect to s. 



Numerical shock propagation using geometrical shock dynamics 525 

The shockfront position x,(O) and the Mach number M2(0)  are determined by the 
initial data given at  t = 0. The parameters N and At are chosen by the general rules : 

Rule 1 (3.11) 

where As,(t) = si(t)-s2-,(t) and d is a minimum tolerance on Ast(t) ,  which we discuss 
in detail later. Usually we take constants Kl and K ,  equal to 0.01 and 0.2 
respectively. Rule 1 (3.11) provides an adequate resolution of the shockfront. Rule 
2 (3.12) is the CouranbFriedrichs-Lewy condition and gives stability for all cases 
run. The shockfront at t = At is determined using a second-order one-step explicit 
scheme which provides the necessary initial information to begin the two-step 
leap-frog scheme. 

The numerical scheme as described previously may be used in the absence of wall 
boundaries. These pure initial-value problems occur in the case of self-focusing shock 
waves, for example. 

In  the presence of wall boundaries, the appropriate boundary conditions must be 
applied. Walls coincide with rays in the theory of geometrical shock dynamics; 
therefore, at wall boundaries the shock must be normal to the walls. Figure 4 
illustrates how this boundary condition is implemented numerically. Points interior 
to boundaries are calculated using the leap-frog scheme. The point at the boundary 
is then determined such that the line segment between the endpoint and its 
neighbouring internal point is normal to the wall. Examples of these initial-boundary- 
value problems are shock-wave diffraction and shock waves in channels. 

The numerical scheme provides for the insertion and deletion of points as they tend 
to spread out in expansive regions or cluster in compressive regions of the shockfront. 
The point spacing As2(t) is checked periodically and we require 

a<-- Ast(t) - - r2(t) < D for all i = 2, .  . . , N ,  (3.13) 

where d = 4j and D = $ usually. If r2(t )  < d,  point x,(t) is removed and if r&) > D,  
point xa-+(t) is added using the cubic-spline interpolant evaluated at t ( s2( t )  + ~ ( - ~ ( t ) ) .  
We preserve the area ratio A,(t)/A,(O) in (3.6) by removing or adding the points at 
t = 0 as well. In either case if (3.13) fails the leap-frog scheme is restarted as 
previously described for t = 0. 

We find it desirable to insert points in order to maintain the initially prescribed 
shockfront resolution (3.1 1).  Deleting points ensures numerical stability at each time 
step (3.12). Furthermore, rays tend to cross as shock-shocks form in compressive 
regions of the shockfront. By deleting points, shock-shocks are effectively fitted into 
the shockfront. 

A simple two-step smoothing procedure is added to the numerical scheme in order 
to dampen the high-frequency errors in x, ( t ) .  After every n, time steps (usually 10 
to 50) we let 

:(xt+l(t) +Xa-l(t))+x&% (3.14) 

where we scan i-even then i-odd for 1 < i < N. The numerical scheme is then 

Asavg 
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FIGURE 4. Numerical boundary conditions a t  a wall. Line segment PQ is normal 
to the wall a t  point P. 

restarted using the smoothed shockfront as initial conditions. The smoothing scheme 
(3.14) is one Jacobi iteration applied to the discrete system of equations 

D2X+(t) ~ , - ~ ( t ) - 2 ~ i ( t ) + ~ i + ~ ( t )  = 0, 1 < i < N .  (3.15) 

This iteration is effective in damping high-frequency fluctuations in xi ( t ) .  The overall 
shockfront given by the lower frequencies is essentially unchanged by this procedure. 

4. Results and discussion 
Successive shockfront positions are calculated numerically for the cases of shock- 

wave diffraction, shock waves in channels and focusing shock waves. We establish 
the accuracy of our numerical scheme by comparing solutions obtained numerically 
with exact solutions found by Whitham and with numerical solutions found by 
Bryson & Gross (1961 ) using the method of characteristics for shock-wave diffraction. 
We then compare the numerical calculations with experimental data for all three 
cases. Many important features of the flows presented in the experiments, namely 
shockfront positions, triple-point positions (i.e. shock-shocks) and wall Mach num- 
bers, are well represented in the numerical calculations. This demonstrates the 
usefulness of the geometrical-shock-dynamics approximation. 

4.1. Shock-wave diffraction 

A simple solution may be constructed using characteristics (2.7) for shock-wave 
diffraction by a convex wall (Whitham 1974). On a C- characteristic 

8 - o ( M )  = const. (4.1) 
Since all C- characteristics originate from the undisturbed region, 8 = 0 and M = Ma, 
we have 

(4.2) 
I n  particular, the wall Mach number M,, perhaps the most important quantity for 
this problem, may be found given the wall inclination angle 8,. Using (4 .2)  a t  the 
wall gives 

8--w(M) = --w(Ma) = const everywhere. 

w(M,) = 8,+w(Mo). (4.3) 
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I I I I \ I  

0.5 I .o 1.5 2.0 2.5 3.0 0 

FIGURE 5. Diffraction by a convex wall: (a) M w / M o  us. -Ow; (b )  expanding shockfronts 
around a 45' circular convex wall. 

For the purpose of testing our numerical scheme we use the strong-shock approxi- 
mation (2.4) which gives M ,  explicitly : 

M ,  = Mo e k e w ,  (4.4) 

where k = n-: = 0.44393 for y = 1.4. Whitham goes on to complete the solution for 
this problem; however, we stop here since we are primarily interested in comparing 

I n  figure 5(a)  we plot the value of M,/Mo us. -Ow using (4.4). The expanding 
shockfronts around a 45' convex wall are calculated numerically and shown in figure 
5(b) .  From our calculations, we determine Mw/Ho a t  evenly spaced intervals of time 
and plot these values uersm -8, as well. We see that the agreement between the 
exact curve and the numerical values is good. 

For shock-wave diffraction by a wedge it is also possible to obtain an exact 

MW. 



528 W .  D.  Henshaw, N .  F.  Smyth and D.  W .  Schwendeman 

solution. Here we use the jump conditions (2.8) and (2.9) with M ,  = M,, 8, = 0 and 
M ,  = M,, 8, = ew 

where x is the angle of the shock-shock line. Again we use the strong-shock 
approximation which gives 

(r-2 - l ) t  (1 - r q  
tan8, = (4.7) 

P- l+  1 ' 

where r = Mo/M, .  Equation (4.7) gives r implicitly in terms of 8,. Equation (4.8) 
then gives x = x(8,). 

We plot x(e,)-8, 0s. 8, in figure 6(a). Successive shockfronts are calculated for 
8, = lo", 20", . . . ,70° and x is determined for each from their graphs. Again we note 
the good agreement with the exact solution for all values of 8,. A representative 
calculation for 8, = 30" is displayed in figure 6 (b) and the position of the shock-shock 
is easily seen, which was the case for all values of 8, run. 

Another interesting case is shock-wave diffraction by a smooth concave wall. In 
figure 7 we show the calculation for a 30" circular bend. The shock-shock in this case 
forms gradually as the shockfront is compressed by the wall. Farther downstream 
where the wall is straight, the shock-shock moves linearly away from the wall similar 
to the wedge case. In fact, far downstream the angle between the shock-shock line 
and the wall is the same as for the 30" wedge. 

Bryson & Gross (1961) obtained both numerical and experimental results for the 
diffraction of shock waves by cones, cylinders and spheres. Their numerical solutions 
also employed the theory of geometrical shock dynamics, but their numerical 
solutions used the method of characteristics based on (2.7) together with the jump 
conditions (2.8) and (2.9) in contrast to the more flexible numerical scheme presented 
here. They found their solutions predicted shockfront and triple-point positions quite 
well for all their experiments. 

As a further test of our numerical scheme, we calculated shockfronts for all the 
examples presented by Bryson & Gross. We only display our results for cylinders and 
spheres as the comparison for cones is essentially the same as for wedges. 

We calculate shock-wave diffraction by a cylinder for M ,  = 2.81. The results of this 
calculation are shown in figure 8. In  this case, we use the true A-M relation (3.5) 
and invert f ( M )  numerically. This will be done from now on unless specifically 
stated otherwise. The most interesting feature of this problem is the two loci of 
shock-shock positions originating from the front and back of the cylinder and 
continuing downstream. The shock-shock positions are determined numerically by 
searching for the maximum change in Mach number in the two regions of the 
shockfront where we know the shock-shock exists. The two loci of shock-shock 
positions are displayed in figure 8 by the two dashed lines. 

In  figure 9, we compare the loci of shock-shock positions obtained numerically 
with experimental data from Bryson & Gross. We only show representative data points 
from the clusters of points given by Bryson & Gross. A sufficient number of points 
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FIGURE 6. Diffraction by a wedge: (a) x ( O , ) - O ,  v8. Ow; ( b )  shockfronts diffracted 
by a 30" wedge. 

0 0.5 
& 1 .o 

b 

I I I I 
1.5 2.0 2.5 3.0 

FIGURE 7. Diffraction by a 30" circular concave wall. 
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0 1 2 3 4 5 6 I 
FIQURE 8. Diffraction by a cylinder for M ,  = 2.81. Shockfronts are given by solid lines 

and loci of shock-shock positions by dashed lines. 

0 1 2 3 4 5 6 7 

FIQURE 9. Diffraction by a cylinder. Numerical loci of shock-shock positions and 
experimental triple-point positions. 

are displayed in order to indicate a trend in the data. The shock-shock positions 
calculated numerically are in good agreement with the experimental data for both 
loci of shock-shock positions. Bryson & Gross obtained the same agreement using 
their numerical solution found by the method of characteristics. 

Finally, successive shockfronts are calculated for diffraction by a sphere at 
M,, = 2.85 and are shown in figure 10. For this axisymmetric calculation, the 
alternative definition of A,(t)  given in (3.9) is used in the numerical scheme. The 
shockfront pattern is much the same as for the cylinder case, and we also calculate 
the loci of shock-shock positions for the sphere. 

The experimental shock-shock positions are shown along with the calculated 
positions in figure 11. For the sphere, the numerical results predict the experimental 
data very well for both the front and back loci of shock-shock positions. Bryson & 
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0 1 2 3 4 

FIGURE 10. Diffraction by a sphere for Mo = 2.85. Shockfronts are given by solid lines 
and loci of shock-shock positions by dashed lines. 

I 1 I I 

0 I 2 3 4 

FIGURE 11 .  Diffraction by a sphere. Numerical loci of shock-shock positions and 
experimental triple-point positions. 0,  Mo = 2.85; x , 4.41. 

Gross noted this also for the front locus of shock-shock positions. However, they were 
unable to obtain a solution using characteristics for the back locus of shock-shock 
positions. The experimental shock-shock positions for M ,  = 4.41 are also shown in 
figure 11,  These data points are also in good agreement with the calculations. This 
indicates the relative insensitively of the shock-shock positions for high Mach 
numbers (i.e. strong shocks). 

4.2. Shock waves in channels 
A natural extension of shock-wave diffraction is the case of shock waves in channels. 
We have seen for shock-wave diffraction that many solutions were available to 
compare with our numerical solutions. To our knowledge, there are no solutions 
available for the case of shock waves in channels. The added constraint of an 
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additional wall boundary makes solutions obtained using the method of characteristics 
difficult. This second wall boundary presents no additional problems in our numerical 
scheme since two boundaries are treated as easily as one. 

Edwards et al. (1983) experimentally determined the behaviour of shock waves 
propagating around 90' circular bends in channels with nearly rectangular cross- 
section. Two bends were used, one of inner radius of 48.9 mm and outer radius 
101.1 mm (channel l ) ,  and the other of inner radius 123.9 mm and outer radius 
176.1 mm (channel 2). The experiments were performed for initial Mach numbers M, 
between 1.2 and 2.9. The experimental results consisted of a description of the 
shock-wave pattern in the channels and measurements of wall Mach mumbers M, 
on the inner and outer walls. 

I n  figure 12, we display a typical calculation for channel 1 (sharp bend). The 
shockfront expands around the inner wall in a similar fashion to the convex wall 
diffraction described in $4.1. At the outer wall, the shockfront compresses and forms 
a shock-shock. These two features are essentially independent until the expanding 
shockfront reaches and shock-shock which is then weakened and turned towards the 
inner wall. For channel 1 ,  the shock-shock reaches the inner wall in the straight 
region of the channel after the bend for all Mach numbers considered. The shock-shock 
reflects off the inner wall and procedes towards the outer wall. This reflection from 
wall to wall continues for some distance down the channel although i t  is not displayed 
in figure 12. 

A typical calculation for channel 2 (shallow bend) is shown in figure 13. Many of 
the features are the same as for channel 1 except that the shock-shock may reach 
the inner wall before or after the bend, depending on the Mach number. For the 
particular value of M, shown, the shock-shock is seen to  reach the inner wall at the 
end of the bend. The clear shock-shock reflection observed for channel 1 is not seen 
here since the angle between the incident shock-shock and the wall is small and the 
strength of the shock-shock is weaker. For Mo = 1.2, the shock-shock reaches the 
inner wall after the bend; however, its strength is so weak that a clear reflection is 
still not observed. 

Edwards et al. observed that the shock wave did not recover to  a planar front 
within the bend for channel 1 ,  which is in agreement with our calculations. 
Conversely, for channel 2, they found that recovery to  the planar front did occur 
within the bend. Our calculations tend to  support this observation. The shockfront 
recovers to  a nearly planar front in all our calculations for channel 2. 

Measurements of M ,  versus distance along the wall are given by Edwards et al. 
for the cases of M, = 1.7, 2.1, and 2.7 for channel 1 and M, = 1.2, 1.9, and 2.9 for 
channel 2. These cases are calculated numerically and we determine the values of M, 
also. We compare the experimental data with the numerical values in figures 14 and 
15. There are two sets of data in each figure corresponding to M, from each wall. 
The set with M,/M, > 1 comes from the outer wall and the set with Mw/Mo < 1 
from the inner wall. For each set, the distance is measured from the beginning of the 
bend along the corresponding wall with the same scale as used in figures 12 and 13. 

The comparison for channel 1 is shown in figure 14. The Mach number on the inner 
wall is found experimentally to decrease to  0.6M0. We see that the calculations 
support these measurements. Both numerical and experimental results show the 
decrease in M, around the bend and a constant M, in the straight portion after the 
bend. On the outer wall, the experimental data show an increase in M, to 1.3M0. 
The shock-dynamics theory predicts a slightly larger increase to 1.4M0. Edwards 
et al. also predict a larger increase using a rough approximation to Whitham's theory 
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FIGURE 12. Shock waves in channel 1 for M ,  = 2.1. 
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FIGURE 13. Shock waves in channel 2 for M,, = 1.9. 

that ignores the presence of the inner wall, an adequate approximation until the 
expanding shockfront from the inner wall reaches the shock-shock. In agreement 
with experiment, we find that the Mach number on the outer wall decreases as a 
result of this interaction. When the shock-shock reaches the inner wall, a large jump 
in M, is observed in our calculations. Unfortunately, no experimental measurements 
were given to compare with this result. 

Figure 15 shows the results for channel 2. For the shallow bend, M ,  decreases to 
0.7M0 on the inner wall in both experiments and our calculations. M ,  increases to 
1.15M0 on the outer wall in the experiments, whereas our calculations predict a 
slightly higher value. For No = 1.2, the Mach number on the inner wall attains 
a constant value in the straight portion as in channel 1.  For M ,  = 1.9 and 2.9, a 
constant value is not reached since the shock-shock meets the inner wall before the 
end of the bend. The experimental evidence tends to support these observations. 
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FIQURE 14. M,/M,  us. distance along the wall for channel 1 :  (a )  Mo = 1.7; ( b )  Mo = 2.1; (c) 
M,, = 2.7. 0 and 0 are experimental points (Edwards et aE. 1983), x and + are our calculated 
values. 
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FIGIJKE 15. Mw/Mo v.7. distance: along the wall for channel 2: (a )  M ,  = 1.2; ( b )  M, = 1.9; ( c )  
Ma = 2.9. 0 and 0 are experimental points (Edwards et al. 1983), x and + are our calculated 
v a1 ues . 
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4.3. Focusing shock waves 
We are interested in examining the focusing process as determined by geometrical 
shock dynamics. We numerically experiment with a variety of initial shapes and 
initial Mach numbers to  study how these influences affect the focusing-shock-wave 
patterns calculated. Most of our calculations are motivated by experiments ; however, 
we also point out other interpretations. Overall, we find reasonable agreement with 
experimental observations. 

Sturtevant & Kulkarny (1976) experimentally studied the behaviour of focusing 
weak shock waves. Initially plane shock waves with M ,  between 1.005 (sound pulse) 
and 1.5 (comparatively strong shock) were propagated in a shock tube and brought 
to a focus by reflecting off various concave reflectors at one end of the shock tube. 
Depending on the initial Mach number of the incident shock wave and minimum 
radius of curvature of the reflected front, the shock either focused down upon itself 
and became crossed and folded, as in geometrical acoustics, or the shock did not focus 
down to a point. I n  the latter case, a pair of shock-shocks formed with a 
Mach-stem-like section between the shock-shocks. They found that the crossed 
pattern was preferred for lower initial Mach numbers or for reflected shockfronts with 
a smaller minimum radius of curvature. 

To compare this experimentally determined behaviour with that predicted by 
geometrical shock dynamics, two families of initially curved shockfronts were 
propagated numerically. The first family of initial shockfronts are given by 

x = L ( L )  
R y2+2 ’ (4.9) 

where R is the minimum radius of curvature. For R positive, the curve given by (4.9) 
obtains a minimum of x = 0 on the axis of symmetry (y = 0) and asymptotes to  a 
maximum of x = 1/R for y+f co. Successive shockfronts calculated using the 
one-parameter family in (4.9) as initial conditions give a general picture of the 
focusing process determined by geometrical shock dynamics. These results also show 
good qualitative agreement with experiment. We refer to all curves given by (4.9) 
as profile 1. The second family of initial shockfront shapes labelled profile 2 is 
displayed in figure 16. The choice of profile 2 was motivated primarily because i t  
compared more closely with experimental data (see later). However, the results for 
profile 2 may also be viewed in a more general context as an example of a planar 
front with an inward bulge. The time evolution of t,hese fronts illustrates the stability 
process for a planar shock wave as given by geometrical shock dynamics. 

We first discuss the results obtained using profile 1. These calculations are 
performed in the absence of wall boundaries with the free ends of the shockfront 
initially a t  y = f4. This domain is large enough that the free ends do not affect the 
focusing process near the axis of symmetry. I n  the subsequent plots of the 
shockfronts calculated using profile 1, we only display the portion of the shockfronts 
near the axis of symmetry, since the focusing process is of main interest. 

I n  geometrical acoustics, folded wavefronts occur and Sturtevant & Kulkarny’s 
experiments show that this can continue for weak shockfronts. Geometrical shock 
dynamics, and the numerical version described here, shows only the leading parts of 
the fronts. I n  particular, the numerical point-removal procedure eliminates the 
overlap. This is done since the removed points would not describe the overlap 
correctly and would interfere with the continuation of the subsequent numerical 
steps. To show this, and partially test whether this removal will result in any error 
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FIGURE 16. Profile 2 for bla = 1.22 and Oc = 80' given by solid curve. 

in the calculation of the motion of the shock, the results of the numerical geo- 
metrical-shock-dynamics scheme for initial Mach number 1 (a sound wave) were 
compared with the exact results given by geometrical acoustics. 

Figure 17 shows the results for the propagation of a sound wave using geometrical 
acoustics and shock dynamics. The geometrical-acoustic plot (figure 17a) was 
obtained directly by drawing the curves (including folds) at  various distances out 
along the normals to the initial curve. The shock-dynamics plot (figure 17b) was 
obtained by the numerical scheme using the weak-shock A-M relation with M ,  = 1 .  
It can be seen that these curves for the leading fronts are identical. The folds and 
the caustic do not appear explicitly in the geometrical-shock-dynamics plot. This 
gives verification that the elimination of the crossed and folded portion of the 
shockfront does not result in significant error in the remaining portion of the 
shockfront. The resulting discontinuity in the shockfront corresponds to the regular 
reflection of the expansion waves propagated along the shock when these waves meet. 
We note that the theory of geometrical shock dynamics does not explicitly allow for 
regular reflection and only permits Mach reflection. However, in cases where the 
Mach stem is very small (in figure 17b for example), we treat these cases as regular 
reflection. 

Successive shockfronts calculated using profile 1 with vatrious values of R and M ,  
are shown in figures 18 and 19. It can be seen from these plots that geometrical shock 
dynamics gives the same qualitative behaviour as that observed by Sturtevant & 
Kulkarny. Expansion waves form on the shockfront and these move along the front 
and towards each other. For initial Mach numbers near 1 ,  these expansion waves 
interact to give regular reflection initially, with Mach reflection occurring and a Mach 
stem forming at larger times. This change from regular to Mach reflection occurs 
when the angle between the interacting waves is large enough that regular reflection 
can no longer occur. For larger initial Mach numbers, no regular reflection occurs and 
a Mach stem is formed from the start of the interaction. Furthermore, as the 
minimum radius of curvature of the initial shockfront increases, the transition point 
to total Mach reflection occurs at  lower Mach numbers. It is interesting to note that 
for Mach numbers as low as 1.3, the behaviour of the shock wave is qualitatively 
similar to that for strong shocks. 



538 W.  D.  Henshuw, N .  F .  Smyth and D.  W .  Schwendemn 

0 1 2 3 4 5 

2 

1 

0 

- 1  

-2  
0 I 2 3 4 5 

FIGURE 17. Successive shockfronts for profile 1 with 12 = 0.5: ( a )  geometrical acoustics; 
( b )  geometrical shock dynamics. 

A more detailed comparison with the experimental data is obtained using profile 
2 (figure 16). In  the experiments performed by Sturtevant & Kulkarny, curved 
shockfronts were produced by reflecting plane shock waves from a curved reflector. 
The reflected wave then propagated into the uniform flow entrained by the incident 
shock. To compare our calculations more closely with these results, we require some 
initial shockfront shape that approximates the actual curve front as i t  leaves the 
reflector surface. The initial shockfront is then propagated numerically into a 
uniform flow with Mach number M, given by 

2 M:-1 M ,  = -- 
y + l  M ,  . 

(4.10) 

The reflected-shockfront shape as given by geometrical acoustics is a reasonable first 
approximation to the actual reflected wave for weak incident shocks. For the case 
of a parabolic reflector, profile 2 with bla = 1 is this approximate reflected curve. We 
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FIGURE 18. Successive shockfronts for profile 1 and R = 0.5; (a) M,, = 1.02; ( b )  Mo = 1.06; 
(c) M,, = 1.30. 
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FIGURE 19. Successive shockfronts for profile 1 and Mo = 1.06: (a) R = 0.25; (b)  R = 0.50; 
(c) R = 0.75. 
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FIGURE 20. Mach numbe us. distance on the axis of symmetry for profile 2 with 6, = 80°, 
No = 1 . 1  and M ,  = 0.16. 

note, however, that the actual reflected ' :lock wave has a variable shock strength. 
The diffracted waves from the corners of the reflector are weaker than the incident 
shock wave, thus they travel slower than the incident shock. Also, the outer portions 
of the incident shock wave reflect first and travel back into the flow entrained by 
the incident shock. These effects combine to give a flatter reflected shock wave than 
the reflected wave given by geometrical acoustics. The aspect ratio b/a  of the ellipse 
in figure 16 is used to model the flattening of the actual reflected shock wave. 

The quantity b/a was found to have a large effect on the peak Mach number near 
the focus. In  figure 20, we plot the Mach number versus distance on the axis of 
symmetry for different values of b/a. For each curve the distance is normalized with 
respect to the radius of the inner circle (b/a = 1)  for 8, = 80". As expected the peak 
Mach number decreases as b/a increases. Sturtevant & Kulkarny measured a peak 
relative shock strength CT = 4.9 for M ,  = 1.1 and BC = 80'. The relative shock 
strength is related to the Mach number by 

where z ( M )  is the pressure ratio p J p 1  of the shock given by 

(4.11) 

(4.12) 

We see that the initial curve for b/a = 1.25 gives the best agreement with 
experiment. 

We also studied the effect of a variable initial Mach-number distribution on the 
peak Mach number. We experimented with different smooth Mach-number distribu- 
tions. In each case, the initial Mach number on the axis of symmetry was set equal 
to M, and decayed off the axis to a Mach number greater than or equal to 1.  For 
weak shocks, our experiments showed a relatively small change in the peak Mach 
number for a variety of initial distributions. 

Some typical views of the focusing-shockfront patterns calculated using profile 2 
are shown in figure 21. We found that the general shockfront pictures did not depend 

18-2 
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FIQURE 21 (a-c). For caption see facing page. 
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FIGURE 21. Successive shockfronts for profile 2 with b/a  = 1 and 8, = 80': (a )  M, = 1.1, 
M ,  = 0.16; ( b )  M ,  = 1.3, M ,  = 0.44; ( c )  M,, = 1.3, M ,  = 0.44 (narrowing Mach stem); ( d )  
M ,  % 1, M ,  = 0. 

significantly on the quantity b/a or the initial Mach-number distribution. For 
simplicity, we take b/a  = 1 and M, = constant. Features similar to those seen in 
figures 18 and 19 are observed in figure 21. For M ,  = 1 . l ,  a single shock-shock forms 
near the focus before a transition to a pair of shock-shocks occurs farther downstream. 
A slightly larger M,  shows a small Mach stem which forms initially just before the 
focus (figure 21b). The stem decreases in size as it passes the focus then increases 
rapidly. This narrowing-Mach-stem phenomenon is clearly seen in figure 21 ( c ) .  
Sturtevant & Kulkarny observed a similar narrowing-Mach-stem phenomenon, 
although their narrowing occurred for a slightly lower M,. We suspect that this 
difference is a result of the approximate initial conditions. 

It is also interesting to note the focusing shockfronts for M ,  $ 1 (figure 21 d ) ,  where 
we consider the shockfront travelling into a gas at  rest ( M ,  = 0). This result is shown 
for completeness and is not meant to be compared with the experimental data 
obtained for weak shocks. Here, a Mach stem forms initially and increases in size 
(without narrowing) as the shockfront propagates downstream. 

In all the cases shown in figure 21, the curved shockfront far downstream is 
approaching a planar front. We see in these examples the stability mechanism for 
a planar front as determined by geometrical shock dynamics. 

A further study of the Mach number versus distance gives added insight into the 
focusing process for profile 2. In figure 22, we see the effect on these curves of varying 
M,  and 8,. For b/a = 1,  the radius of inner circle is related to 8, by 

(4.13) 

Linear theory (geometrical acoustics) gives a perfect point focus at a distance equal 
to R(8,) on the axis of symmetry for profile 2. The focus position determined by the 
peak Mach number always occurs after the focus for the nonlinear theory (geometrical 
shock dynamics). We also observe the formation of a shoulder before the peak in the 
family of curves for increasing M,, in particular for M ,  = 1.3. This shoulder 
corresponds to the initial formation of a Mach stem. For M ,  = 1.3, the stem decreases 
in length as it passes the linear focus point before i t  eventually increases in length. 
The peak in Mach number following the shoulder is a result of the narrowing stem. 



544 W .  D. Henshuw, N .  F.  Smyth and D. W .  Schwendeman 

3.0 

2.5 
M - 
MO 

2.0 

1.5 

1 .o 
0 0.5 1.0 1.5 2.0 2.5 3.0 

x l  W C )  

3.0 

2.5 

M - 
MO 

2.0 

1.5 

1 .o 
0 0.5 1 .O 1.5 2 .o 2.5 3.0 3.5 

x/R(Bc = SO') 

FIQURE 22. Mach number us. distance on the axis of symmetry for profile 2 with bla = 1 : 
(a)  ee = 80"; ( b )  M ,  = 1 . 1 ,  M, = 0.16. 

The shoulder formation is a useful feature of the Mach number versus distance 
curves since it signals the transition from the basic single shock-shock pattern near 
the focus to the Mach-stem pattern. The three curves in figure 22 (b) were chosen to 
show this transition. The curve for OC = 80" is a typical curve corresponding to the 
single shock-shock pattern, which we interpret as the actual shock wave being 
crossed at the focus. The presence of a shoulder following by a peak in Mach number 
indicates that  the focused pattern for Oc = 70" is a transition case. For 8, = 60°, the 
peak has disappeared and only the shoulder remains. I n  this case, the Mach stem 
forms initially and propagates downstream without narrowing. 

I n  the present work, we have considered a variety of two-dimensional and 
axisymmetric problems for the motion of shock waves in gases. The numerical 
scheme may also be used for other problems where a relation between the amplitude 
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and speed of propagation of the wavefront is known, as is the case for soliton motion 
(Miles 1977) for example. The theory of geometrical shock dynamics also applies for 
fully three-dimensional wave motion and it should be possible to extend the present 
numerical scheme to calculate these flows. Other possible considerations are more 
difficult two-dimensional flows such as shock-wave motion in a variable-density 
medium. All of these extensions are being considered for future research. 
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